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The problem of detemfining the natural frequencies and modes for one-dlmensional substantially inhomogeneous distributed 
systems with boundary conditions of the first kind is investigated. Using the Rayleigh-Ritz method (in particular, the Rayleigh 
principle) an original determination of the small parameter is given and the corresponding perturbed boundary-value problem 
is formulated. A constructive method of obtaining bilateral estimates of the first eigenvalue (frequency) and for calculating the 
frequencies and mode~; with as high a spexStied degree of accuracy as desired is developed. The high efficiency of the proposed 
numerical-analytical method is illustrated by calculating specific examples which model the oscillations of an inhomogeneous 
string and by comparing the results obtained with available results. The analytic procedure and the computational algorithm are 
modified for the case of boundary conditions of the second kind. © 1997 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

One-dimensional oscillatory systems with substantially inhomogeneous distributed parameters are 
considered (see [1-4], etc.). Mechanical models of such systems are a string, a continuous spring, an 
elastic beam or shaft, and certain hydrodynamic and quantum-mechanical systems. In applied problems 
the inertial and elastic properties may usually vary considerably along the length (with respect to the 
spatial coordinate), which is assumed to be finite. These characteristics include, for example, the linear 
density, distributed stiffness for stretching or bending, the density of a stratified liquid and a perturbing 
potential. In addition, an oscillatory distributed system may be in an elastic medium (a Winkler 
foundation [2, 3]), whose stiffness coefficient may also vary. 

We will consider mainly the case of clamped left and right ends (boundary conditions of the first kind 
[3, 4]). The main results can then be formulated, without detailed derivation, for cases when one or 
both ends are free (boundary conditions of the second kind [3, 4]). The initial fairly smooth distributions 
of the displacements and velocities are assumed to be specified and matched with the boundary 
conditions, which may be time-varying. In general, there is a distributed external action (a force or 
moments of forces,) on the system. 

The linear initial-boundary-value problem considered admits of a separation of variables and can be 
reduced to determining the natural frequencies and modes of oscillations ([1-4], etc.). Using the methods 
of functional analysis and mathematical physics it is required to construct a solution of the self-conjugate 
boundary-value problem for eigenvalues and eigenfunctions (the Sturm-Liouville problem) [3-8]. 

Taking the above assumptions into account, the problem in question can be written as follows in 
dimensionless forra 

[p(x)u']" +[~,r(x)-q(x)]u =O, 0 < x < l  

u(0) = u(1) = 0, u = u(x, L) (1.1) 

Here u is a funct:ion which defines the mode of the oscillations while ~. is the constant of the separation 
of variables (k = ¢~2, where co is the frequency). The specified fairly smooth functionsp, q and r define 
the stiffness and inertial properties, respectively. They satisfy the constraints 0 < Pl ~< P ~< P2 < oo, 
0 < rl ~< r ~< r2 < oo, q ~> 0 for all 0 ~ x ~< 1. The conditions imposed have a definite physical meaning. 
Note that the length of the system is normalized and is equal to unity. Moreover, to fix our ideas, for 
the present we will investigate the case of clamped ends. 

It should also be noted that the requirement that the function p(x) should be continuously 
differentiable according to (1.1) is redundant, since it is the characteristicp(x) u' = z that has physical 
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meaning. Equation (1.1) can be reduced to the form of the system u' = z/p, z" = - ( k r  - q) u with zero 
boundary conditions for u. Further, using the linear transformation of the function v = up-V2(x) or a 
change of the argument x --~ y of the form y = ~p-l(x) dx, Eq. (1.1) can be reduced to a form in which 
p(x) - 1 o r p ( y )  - 1 [6]. 

For problem (1.1) it is required to obtain the values of the parameter Z. = hn, n = 1, 2 , . . .  (the 
eigenvalues) for which non-trivial solutions un(x) = u(x, kn) (eigenfunctions) exist, defining the natural 
frequencies and modes of the oscillations, respectively ([1--8], etc.). For applications the problem of 
finding the lowest frequencies and modes (n ~< 10) which, as a rule, define the performance of the 
mechanical system is of considerable importance; the calculation of Z, 1, Ul(X) is of particular interest. 
Our research was mostly devoted to this problem. The eigenvalues and functions with large numbers 
n >> 1 can be calculated extremely effectively using asymptotic formulae [5]. 

When the functions p, r and q, which may vary considerably in the range x ~ [0, 1] considered (for 
example, by many orders of magnitude), behave in a complex way, available methods may turn out to 
be insufficiently effective when determining the natural frequencies and modes and, primarily, the lower 
ones. To calculate these approximately, a number of methods have been developed including extremely 
sophisticated ones [1-5, 8-11]. As computational practice shows, the simplest and most natural 
Rayleigh-Ritz variational method often gives acceptable results for obtaining upper limits of lower 
frequencies. The method has been justified by Krylov [9] (convergence to the exact values was established 
and an estimate of its rate was given). 

The construction of lower estimates is extremely important for applications. Results have been 
obtained which require fairly lengthy calculations, based on an approximate solution of Fredholm's 
equation of the second kind [10, 11], equivalent to the initial problem. 

Thus, we will consider the problem of finding the first eigenvalue ~.1 of problem (1.1) as being of 
special interest from the theoretical and applied points of view. We will use the few-coordinate approxi- 
mation of the eigenfunctions using the Rayleigh-Ritz method [1-3, 8--11]. We will formulate the 
variational problem equivalent to the Sturm-D'ouville problem (1.1). It involves minimizing the quadratic 
functional J[u] with the additional normalization condition ~[u] = 1 in the class of functions u which 
satisfy the boundary conditions (1.1) 

! 
J[u] = ~ [p(x) u '2 + q(x) u 2 ] dx  ---> min (1.2) 

0 

1 
*tu]=llull  --- '~(U,U)r = I u2r(x) dx= 1, u(O)=u(l)=O 

0 

The solution ul (x) of variational problem (1.2) is the first eigenfunction of the Samn-Liouville problem 
(1.1), while the minimum of the ftmctional J[Ul] = ~,1 is the first eigenvalue. 

To obtain the second eigenfunction Ue(X) and eigenvalue Z2 we have to solve problem (1.2) in a 
narrower class of functions u which satisfy the additional condition of orthogonality Ol[u] = (u, Ul)r = 
0, where the parentheses, as in (1.2), denote the scalar product of the functions u and ul with weight 
r(x). After the function u2(x) is constructed and the eigenvalue L2 = J[Uz] has been obtained, we similarly 
formulate the problem for determining u3(x), k3, and also the subsequent functions u,(x) and eigenvalues 
x~ 

J[u] --~ min, ¢[u] = | ,  IX}k[//] ~- (U,  Uk) r = O, k = 1, 2 ..... n - 1 (1.3) 

JIu,,] = k,,, u,,(x) = u(x, g,) 

The procedure for constructing subsequent solutions of the Sturm-Liouville problem (1.1) by 
reduction to variational problems with equality constraints of the type (1.3) can be continued without 
limit. 

We will further consider problem (1.2) as the least complicated one and of practical interest. In 
applications, the thoroughly developed Rayleigh-Ritz method [ 1-11] is often used for its approximate 
solution. The Rayleigh principle is a special result; this enables one to obtain fairly simply, using quadra- 
tures, an upper limit ~.~ for the first eigenvalue Z, 1 

0<7~1~<7~ ~ = J[¥1] ¥1(0)=~/ l ( l )=0  ¢[Wt]' (1.4) 
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Here ¥1(x) is a certain ("test") function, not necessarily normalized by (1.2), having a continuous 
first derivative for x e [0, 1]. It is chosen from additional considerations regarding the first form of the 
oscillations [1, 3, 9]. In particular, the function ¥1 # 0 when 0 < x < 1, i.e. it has no intermediate zeros; 
when q - 0 it is cxmvex upwards or downwards, etc. 

The equality X1 = X~ in (1.4) holds if and only if ¥1(x) = kul(x), k = const. Estimate (1.4) does not 
enable us to judge how dose X~ and X1 are. To do this we need to obtain the lower estimate X~ I> X1, 
which is a rather difficult problem. As it turned out, available approaches [10, 11] to constructing such 
estimates use the theory of Fredholm integral equations of the second kind. They require complicated 
multiple quadratures, which lead to considerable computational difficulties. In view of what was said 
above it is important to study the following problems. 

1. To establish how well the limit X~ of the type (1.4), obtained by the Rayleigh-Ritz method, using 
a small set of coordinate functions ¥i(x) (in particular, according to the Rayleigh principle using one 
function ~li(X)) , approximates to the exact value X1. 

2. To obtain a lower limit XI., which, together with ~.~, gives a satisfactory estimate of Z,1. 
3. To refine the limits X*, X1 obtained. 
4. To develop a procedure for successively refining the estimates, which gives, in the limit, the required 

accurate value of X1. 
5. To suggest approaches for the approximate solution of other boundary-value problems. 

2. THE LOWER LIMIT OF THE FIRST EIGENVALUE 

Suppose ¥1(x) is an admissible function, i.e. continuously differentiable and satisfying boundary 
conditions (1.4); it is not necessary to satisfy the normalization condition with weight r(x) (1.2). Suppose 
X~ is the upper limit of the eigenvalue X1, obtained using Rayleigh's principle, see (1.2). Together with 
the Sturm-Liouvi[le problem (1.1) (n = 1) we will consider the following Cauehy problem 

[p(x )u ' l '+[X~r(x) -q(x ) lu=O,  u(O)=O, o ' (O)=l  (2.1) 

Its solution v = Vl(X, g~) is assumed to be known in any of the following forms: analytic, numerical 
or in the form of an algorithm (a procedure). It can then be established that the function vl possesses 
the following properties 

uI(O,~.;)=uI(~,XI)= O, 0 < ~  < 1 (2.2) 

Here ~ is the lin;t point of intersection of the x axis (the abscissa). The fight-hand side of inequality 
(2.2) for ~ is a consequence of the second Sturm oscillation theorem [6], where the equality only occurs 
when Z~ = Xl. Hence, in the general case when ¥1 ~ kul we obtain X1 < Z~, 0 < ~ < 1. The smallness 
of the quantity ~ = 1 - ~ > 0 can serve as a measure of the closeness of the upper estimate X~ - Xl > 
0, which is ensured on the basis of the results obtained in [9]. 

We will correct ('reduce) the quantity X = X1 in (2.1) by multiplying it by the number x, 0 < x < 1. 
It is natural to reklte the quantity ~ to ~ < 1, for example, ~ = x(~) = ~,  0 < T < **, see below. We 
will now consider the Cauchy problem of the type (2.1) with a reduced value of Z = Z~x 

[p(x) w']" + [X~×r(x)- q(x)] w = 0, w(0) = w'(0) = 1 (2.3) 

Suppose the solution w = w 1 (x, X ~x ), x ~ [0, 1 ] of the Cauchy problem (2.3) is constructed numerically 
or analytically. We have the following assertion. 

Theorem 1. If w = Wl(X, X~x) ~> 0 when 0 < x ~ 1, the quantity X]x = X1. gives the lower limit of 
the first eigenvalue 

ZI*~<XI~<X~, X1*=XI× (2.4) 

The upper limit X~ was constructed previously using the Rayleigh principle (1.4) (or the 
Rayleigh-Ritz principle, see Section 5). 

The proof of the assertion follows directly from the properties of the first eigenfunction Ul(X). In fact, 
for ul(x) when X = X1 we have the identity (1.1), where, to be specific, we can assume u'l(0) > 0; then 
u[(1) < 0, ul(x) = 0, 0 < x < 1. The quantities ul(x), ~,1 are not assumed to be known. Similarly, for 
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the known function Wr--the solution of the Cauchy problem (2.3)---a similar identity holds. Multiplying 
the identity for ul by wl and the identity for Wl by ul, subtracting and integrating by parts, taking the 
boundary conditions into account, we obtain the equality 

I 
(~', -- ~'~) S UlWlrdX : -p(l)  U;(1) wt(1,X]x) (2.5) 

o 

It follows from the condition of the theorem that the right-hand side of (2.5) is non-negative. Since 
the integral is positive, the lower limit XI. (2.4) follows from (2.5). 

We will discuss the constructive aspect of the theorem. It is apparently small, as in the "shooting" 
method, unless we assume an effective rule for choosing x, see Section 3. The convenience of using it 
is due to the fact that the abscissa ~ is determined by direct analytic or numerical integration of the 
Cauchy problem (2.1). 

3. THE USE OF THE PERTURBATION METHOD TO REFINE 
THE SOLUTION OF THE S T U R M - L I O U V I L L E  PROBLEM 

It follows from (2.2) and the estimate (2.4) that the criterion for the accuracy of the few coordinate 
(in particular, the single-coordinate ¥1(x)) approximation of the first eigenfunction ux(x) is the  satisfaction 
of the strong inequality 

1 - ~ = e , ~ l ,  e > 0  (3.1) 

The smallness of the numerical parameter e (3.1) is achieved by appropriate choice of the test function 
yx(x) or on the basis of the approximation in [9]. This property enables an effective procedure to be 
developed for refining the solution of problem (1.1) and the limits X], X1.. 

We will introduce a new independent variable y = ~c and convert relations (1.1) to the form of a 
perturbed Sturm-Liouville problem with a small parameter 

• 1 i,t = __~__~ [P(~(E)) u'] +[~tr(~(E)l- ~--~"~q(~(~)l]u=O' ~2 (3.2) 

u = u ( y , e . ) ,  O<<- y ~ ,  u(O,£)=u(~,£)=O, ~ 1  --1+£+E2+... 

The primes denote derivatives with respect to y. This method is analogous to the one proposed by 
Poincar6 [12, 13] for constructing perturbed periodic motions of non-linear oscillatory systems. 

We will take the following as the "generating problem" 

[p(y) u T  + [lar(y) - q(y)] u : 0, u(0) = u(~) : 0 (3.3) 

According to (2.1) and (2.2) the first eigenvalue Ix1 = X] and the function Ul = vl(y, X]) are known. 
Using these when e > 0 is sufficiently small, we can develop an effective procedure of the perturbation 
method which enables the required solution Ix1(e), ul(y, e) of problem (3.2) to be constructed with an 
arbitrary speeitied degree of accuracy with respect to e. 

We will initially use a standard scheme or the expansion of the required quantities in powers of e. 
Assuming the functions p(x ) ,  r(x), q(x)  to be continuous, we reduce the perturbed Sturm-Liouville 
problem (3.2) to the form 

[ p ( y )  u']" + [ixr(y) - q(y)] u = ell(IX, y,l~, [u]), u(0, Ix, e) = u(~, Ix, I~) : 0 (3.4) 

H =- - [p 'yu ' ]"  - B y r ' ( y )  u + 2q(y) u + y q ' ( y )  u + F. .... Ix = X~ -2 

Here Ix = Ixx(e) is the required eigenvalue and u = ut(y, Ix, e) is the corresponding function. We will 
seek the solution of problem (3.4) in the form of expansions 

* ° . .  IX = Ixl +¢v} I)+~2 .... u=ul =vl(y, Xl)+eu[l)(y)+¢ 2 (3.5) 
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Substituting (3.5) into (3.4) and equating coefficients of like powers of ¢., we obtain a sequence of 
boundary-value problems of the same type 

[p(y)v [i)], + [Z~r(y)- q(y)]v [i) = _v~i)r(y)v l + Hi(Y) (3.6) 

v~i)(O)=v~i)(~)=O, i>~ l 

Here at the ith step the unknowns are v[ '?, v~ i), while the functions Hi(y) are determined from the 
solutions at previous steps. The solution of problem (3.6) is constructed by standard methods of the 
theory of linear differential equations [6]. This can be carried out in the form of quadratures, since the 
general solution of the corresponding homogeneous equation is found using Liouville's formula, see 
Section 4, and the known function va(y, ~,~). 

For boundary-value problem (3.6) to be solvable it is necessary (the Fredholm alternative) for the 
fight-hand side to be orthogonal to vl. From this relation, at each ith step, the required coefficients v~ 0 
are determined 

1 I Hi(Y)vI(Y,~)dY, IIo, 11 = o = * vli)=[l~ll~o 0 I (Y'~I)r(y)dy (3.7) 

Note that the fimction H1, by (3.4), is found using the known Z*I and va(y, 7~). From (3.7) we then 
obtain an expression for v(  D 

vl l) liver] ! {p'(Y)YU[2 " " 
= + [-2fqyr (y) + 2q(y) + yq'(y)] v ~ (y, Z~ )} dy (3.8) 

As a result we obtain the required fLrSt number ~l(e) with error O(e2), see (3.5). From the definition 
of Ix (3.4) we obtain ~q(e) with the same error O(e ") 

(3.9) 

Higher approxinmtions of the required quantities ~l(e), Ul(X , E) are constructed and the convergence 
is proved in Section 4. 

We will once again discuss the results of Theorem 1 of Section 2 and consider the lower limit g.1 
(2.4) taking into account expression (3.9) for kl. If e is fairly small, then when vq ) > 0, see (3.8), we 
obtain Z*t = ~.~2(1 + erlvq )) for ~.'1, where rl < 1, and in particular ~1 = 0, i.e. ~1 = ~.~2. The rough 
condition which leads to inequality v(~ ) > 0 is the fact that the expressions in braces in (3.8), in particular 
p" >I O, r" <~ O, q" >~ 0 are non-negative (see the calculation of the examples in Section 5). Note that 
when vq ) > 0 for ~ = ~2(7 = 2) the condition wl >t 0 of Theorem 1 must be satisfied. 

Consider the c~tse when vq ) < 0. Then the lower limit is the quantity ~.1. = ~1.~2( 1 + eqvq)), rl > 
1. The quantity ~,!1(2) = ~,$~(2) will be an improved upper limit, which can be used in the same way as 
Z~ (see Sections 2 and 3). The process of constructing the lower limit can be continued (see Example 

2 in Section 5). 
If there is a critical case vq ) = 0, the lower limit will be ~.i. = ~,~(2)rl, 11 < 1 (rl = 1 - O(e)). A 

more accurate esltimate requires calculations of the following coefficients Vl (0, i I> 2. Hence, when 
e "~ 1 the lower limit will certainly be the quantity ~.1. = rlk~, 1 - rl = 8, 1 -> 5 -> e (for example, 5 = 
x < < 1 m 1/2 (1) E,  0 Z , " particular 8 = e ) irrespective of the sign of v 1 • 

An approach similar to that used above can be employed and extended to boundary conditions of 
the second kind (see Section 6) and the third kind, and also to obtain the second eigenvalues gz and 
function u2 of problem (1.1) and the following ones in accordance with (1.3). 

An investigation of the problem of constructing improved estimates and a refined solution of boundary- 
value problem (3.2) is of particular interest from the theoretical and applied points of view. In what 
follows, we describe an approach which is based on the use of the method of successive approxima- 
tions, developed to investigate problems of the theory of non-linear oscillations [12, 13, etc.]. 



456 L .D.  Akulenko and S. V. Nesterov 

4. T H E  C O N S T R U C T I O N  OF AN E X A C T  S O L U T I O N  AND 
T H E  J U S T I F I C A T I O N  OF T H E  P E R T U R B A T I O N  M E T H O D  

The non-standard procedure for obtaining the small parameter and the use of the perturbation method 
for the approximate solution of boundary-yalue problem (3.2) or (3.4), desenq~ed above, can be extended 
by taking into account higher powers of  d , j  ~< 1. However, the approach described in Section 3 cannot 
be adapted to computer calculations of  higher approximations. Hence, it is best to convert the initial 
perturbed Sturm-Liouville problem (3.2) to the following form (to simplify the calculations we here 
assume p(x)  - 1, which does not reduce the generality, see Section 1) 

u" + [ixr(y) - q(y)] u + h(~, y, 6) u = 0 

u=u(y,l . t ,6),  u=u(O, ix,e)=u(~,l . t ,6)=O, ye [0 ,~ ]  

IX = Xd 2, d = (1 - 6) -I, h - Ix[r(dy) - r(y)] + q ( y ) -  d2q(dy) 

(4.1) 

Assuming the function r(x), q (x ) ,x  e [0, 1] to be continuous, we obtain that h = 0(6)  fory  • [0, ~], 
Ix - ~,~ -- 1. Since system (4.1) is linear in u and Ix (bilinear in the combination u, Ix), henceforth it 
will be sufficient to confine ourselves to the Lipsehitz condition with respect to x for r and q. Assuming 
6 = 0 in (4.1), we obtain the unperturbed problem (3.3), the solution Po = X~, u0(y, ~ )  = vl(y, X~) of 
which--the first eigenvalue and eigenfunction--is assumed to be known (see (2.1), (2.2) and (3.3)). 

A direct solution of  boundary-value problem (4.1) by methods of  perturbation theory turns out  to 
be rather difficult and time consuming because of the need to satisfy the boundary condition at y = ~. 
Hence, we will use its corollary 

kt I u2r(y)dy = I{u '2 +[q(y)-h(Ix ,  y,6)]u 2 } dy (4.2) 
0 0 

and dispense with the indicated boundary condition (4.1). We replace it by the arbitrary non-zero 
condition for the derivative u" wheny = 0, in particular, we put u'(0, Ix. 6) = 1. We assume this change, 
since u'(0, Ix. 6) * 0, and, moreover, the functions u are found to within a non-zero factor. 

Thus, instead of the initial perturbed boundary-value problem (4.1) we consider the Cauchy 
problem 

u" + [[t r(y) - q(y)] u + h(u, y, 6) u = 0 (4.3) 

u(0,  la, 6) = 0,  u'(0,  ~t, 6) = 1 

which, together with Eq. (4.2), enables us to obtain the required quantities IX = IX1(6), u = ul(y, 6)---- 
the first eigenvalue and eigenfunetion, respectively, more simply. We will apply the standard procedure 
of the method of successive approximations to the equivalent problem (4.2), (4.3). For this purpose we 
make the following change of  variables 

Ix=~t0+v,  ~t0=Xi; U=Uo+Z, uo(Y, ixo)=Ul(y, Ll)  (4.4) 

Relation (4.2), after substituting expressions (4.4), can be reduced to a quasi-linear functional equation 
of  the form 

" " " * II II - = z  g] V = V  1 - t - N ( v , [ z ] , [ Z  ] ,6) ,  V I = V l ( 6 ) = - -  U 0 [h0u 

Iluoll2 = lt,,grl, tt~]=-- f cpfy)dy, N =  l[V(v,z,z' ,y,6)]  
0 

u? =_ z,2 + (q _ i.tor) z 2 _ (h o + vr) (2u0z + z 2 ) -  vh v (u 0 + z) 

ho-h(I . to ,y ,6) ,  hv=-r (dy ) - r (y ) ,  h v - 6  

(4.5) 

Since the quantity la0 = X~--the first eigenvalue of  the unperturbed problem--is  known, we will not 
indicate the dependence of u0 on Po to simplify the notation. Further, the square brackets in (4.5) denote 
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that the operator of integration with respect toy, similar to the operator/, is applied to the corresponding 
functions. 

We can similarly transform the Cauchy problem (4.3) for the perturbation of z (4.4) 

z" + [~t0r(y) - q(y)] z = -(vt r+ h o) u o - F(v,z,[z],[z ],y,e) 

F m ( v r + h ) z - v ( h v + N u o r ) ;  z(0,v,e)=0, z ' (0 ,v ,e)=0 

(4.6) 

When e = 0, problem (4.5), (4.6) admits of a trivial solution. The functions and operators N and F 
are of quadratic order with respect to the small quantities e, v, vl, z, z'. We will construct the required 
solution v = v(e), z = z(y, e) by successive approximations using the recurrence scheme [13] 

vj+ l=v~+N(vj,tzjl,[z~],E), j>~l; v t = v l ( E ) - E  

. dzj+l 
zj+l = zl ( y ,e )+L(v j , [ z j l , [ z~ l , y , e ) ,  z~÷l = dy 

* i " zt (y,E) •- - W(y , s ) [v t r ( s )+ h(go,S,e)] Uo(s)ds; zl*, zl*" - F. 
0 

3' 
Lj =--I W(y,s)  F(vj ,zj(s;l~),[zj l ,  Iz~l,s,e) ds; Lj,L~ - e 2 

0 

(4.7) 

Here W(y, s) is the unit impulse response function of the unperturbed equation (4.6). It is known 
since it is possible to construct a general solution z0 of the homogeneous equation using Liouville's 
formula [6, 13] 

~' ds 
Zo =CtUo(y)+czwo(y),  w°(Y)--u°(Y)io U2o(s) (4.8) 

W ( y , s ) = - u o ( y ) w o ( s ) + w o ( y ) u o ( s ) ,  W(s ,s )=O,  W.~:(s,s)=l 

The function W0,, s) (4.8) is uniformly bounded for all y, s, ~ I> y I> s i> 0 [6]. 

Theorem 2. Successive approximations of vj, zj, z'j (4.7) converge uniformly as j --, ** for sufficiently 
small values of e, ~ • [0, e0] to a unique exact solution v*(e), z*(y, e), z*'0,, ~) of problem (4.5), (4.6) 
which vanishes at ~ = 0. 

The proof is dhdded into several stages. First, we establish by induction that the successive approxi- 
mations (4.7) are uniformly bounded irrespective of the numberj  = 1, 2 , . . . ,  k, k + 1 , . . .  when E > 
0 is fairly small. Hence, we have the inequalities 

Ivjl  cv, Izjl<  z, j>~l (4.9) 
in which the constants Cv, cz, cz, are found constructively using the estimates of the functions W, r, q, h, hr. 

Inequalities (4.9) then enable us to establish, secondly, that the operators (4.7) "reduce the distance". 
Using Banach's theorem on the contraction operator, one can establish the existence of a fixed point 
(see [7, 8]). Thus, the existence of the limits v*(e), z*(y, e), z*'O,, e) for sufficiently small values ore  > 
0 has been proved. These limits are bounded by (4.9) and vanish when e = 0. 

The value of the parameter e0, which defines the region of convergence with respect to e, can be 
estimated constructively as follows [7, 8, 13]. For the differences 

avj+, Azj+t = 0,~y~max Izj+, -zjl, AZ;+, = 0-,.-~max Iz',+,-z;I 

from (4.7) using tbe limits (4.9) we obtain inequalities of the form 

Agj+ t <~8(txgAvj +13gAzj +TgAz~), g = v,z ,z"  (4.10) 

The constants ( ~  13, T)g in (4.10) are effectively defined in terms of the fight-hand sides of relations 
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(4.7), similar to Cg in (4.9). Adding inequalities (4•10) we obtain the estimate 

Aj+ I <~ECAj; Aj zAVj+AZj+AZ~, C=max(A,B,F) (4.11) 

A=av+az+a~, ,  B=~v+~z+13z., r=Yv+Yz+Y~, 

The main condition of the theorem on the contraction operator follows from (4.11), namely 

e 0 C = 0 < l ,  e0=0C -~, e~[0,e0] (4.12) 

The convergence vj ~ v*, zj ~ z~, z'j ~ z*" for condition (4.12) follows from the property of the 
absolute and uniform convergence asj  ~ ** of the partial sums of the form vj+l = vl + (v2 - vl) + 
• • • + (vj+l - vj) and similar sums for zj+l, z'j+l. Since we have the estimates (4.11) for the terms, the 
corresponding series converge as j ~ .o, as the sums of terms of a geometric progression with 
denominator not greater than 0, 0 < 1. 

Thirdly, we can prove that the limiting functions v*(e), z*(y, e), z*'0', e) satisfy Eqs (4.5) and (4.6)• 
The Cauchy problem (4.6) must be represented using the response function W(y, s) in the form of an 
integral equation with operator L (see (4.7)). Further we substitute these functions into N, F and L, 
we obtain certain values of v, z, z'. Using (4.7) we calculate max Agj+l. They satisfy inequalities of the 
type (4.10) in which the expressions on the right-hand sides contain the differences A*gj instead of z~gj. 
Since the latter, as was established above, tend to zero asj ~ .o, this indicates that 

v = v*(e), z = z*(y,e), z' = z*'(y,e), y ~ [0,~], e e [0,e 0] (4.13) 

is the solution of problem (4.5), (4.6). According to formulae (4.4) the functions 

~t=~t0+v*(e), U=uo(y)+z*(y,e), u '=du/dy  (4.14) 

~.=d-2[t~0+v*(e)], U=Uo(d-tx)+'z* (d-lx, e), ux=d-ldu/dy 

are solutions of the Sturm-Liouville problems (4.1) and (1.1), respectively. 
Finally, and fourthly, we will prove that the solution (4.13), and, hence, also the solution (4.14), 

is unique for sufficiently small e > 0, see (4.12). Suppose we assume the opposite, i.e.v., z., z." is 
another solution of problem (4.5), (4.6), which satisfies (4.9). Then, for the differences Av = v* - v., 
Az = I Z* - Z *  [max, AZ'  = I z*' - Z *  [max we obtain inequalities of the type (4.12), where, on the right-hand 
sides we have the same quantities Av, Az, Az'. If the strict inequality (4.12) is satisfied, these inequalities 
can only hold provided Av = 0, Az = 0, Az" = 0, i.e. v* --- v., z* --- z., z*" -- z'.. Hence, the uniqueness 
of solution (4.13) and (4.14) is also established. 

Note that the required solution v(e), z(y, e), ze(y, e) can be constructed using the procedure of 
expansions in powers of the small parameter e. Here the analyticity of relations (4.2) and (4.3) with 
respect to !1, u, u" or of (4.5) and (4.6) with respect to v, z, z" is used. The analyticity of r and q with 
respect to y and e is not required. The proof of the existence of a solution, the justification for the 
convergence of the series, the estimate of the radius of convergence and the proof of the uniqueness 
are carried out by the method of Cauchy majorant functions [3, 14]. 

Using the Rayleigh-Ritz method, it is possible, without any serious difficulties, to extend the approach 
described in Section 4 to the problem of constructing subsequent eigenvalues ~ and eigenftmctions 
Un(X), n >~ 2. 

Hence, the proposed non-standard method of introducing a small numerical parameter e (3.1) enables 
the values of the eigenvalues and eigenftmctions to be refined. Unlike the shooting method, the 
refinement is carded out with respect to powers of e/, and not by successive division of the interval. 
Using (3.3), (3.8) and (3.9) we can construct a numerical-analytic procedure which accelerates the 
convergence [15, 16]. 

The effectiveness of the method is illustrated below by calculations of model examples. In the general 
case, for the numerical integration of the Cauchy problem and to evaluate the integrals it may be 
necessary to use a PC AT. However, for simple calculations satisfactory results can be obtained using 
programmable microcaleulators. 
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5. M O D E L  E X A M P L E S  

To illustrate the effectiveness of the approaches described in Sections 2-4 we will consider boundary-value 
problems which arise when investigating the oscillations of an inhomogeneous string clamped at the ends [3, 4]. 
Using the method of separation of variables, we obtain Sturm-Liouville problems of the form (1.1) for the coordinate 
functions in whichp(x) --- 1, q(x) m O. 

Example 1. We take the function of the linear density in the form r(x) = 1 + sin ~x, x e [0, 1]. Using the test 
function ¥1 = sin ~:  we obtain, by (1.4), the upper limit of the first eigenvalue: ~1 ~< ~,~ ffi 5.33827. Integration of 
Cauehy's problem (2.1) leads to the abscissa ~ = 0.999417, which is very close to unity. The value of the small 
parameter e is found from (3.1): e = 1 - ~ = 5.83 × 10-4 ,~ 1 and turns out to be fairly small. The corrected value 
~,~2 = 5.33205, as follows from the results of integration of the corresponding Cauchy problem (2.3) (with x = 
~2, T = 2), leads to a quite accurate lower limit ~1" of the eigenvalue Z~ (the conditions of Theorem 1 are satisfied). 
In addition, this assertion follows from (3.8), since v~ (1) > 0. 

Further, from mu]lticoordinate extremely lengthy calculations and estimates [10,11] we have as the "exact" value 
~ = 0.54032~ - 5.33274. The refined value obtained from (3.9) is ~,1 (1) = 5.33284, which leads to a relative error 
of I~ (1) - ~,11 ~,1-1 ~ 10-5, i.e. 0(82). 

Example 2. For comparison with the above results we will consider the apparently dose density fimction r(x) = 

1 + sin(n×/2), x e [0, 1]. Note that the mean density (the overall mass) of the string in both cases is the same and 

equal to 1 + 2/~. V~ will use the same test function W1 = sin ~x in the Rayleigh principle; we obtain the upper 

limit ~,~ = 5.87805. Integration of the Cauchy problem (2.1) leads to the value ~ = ~(D = 0.99805, which is also 
very dose tox = 1; the parameter e -- 1 - ~0) =~ 2 × 10 -3. The analysis of Cauchy problem (2.3) with ~,~(2) ffi ~,$~(D2 

shows that the conditions of  Theorem 1 are not satisfied: wl(1, 2q (2)) < 0. Moreover, as follows from (3.9), vl 0) < 

0, which confirms tll~ese conclusions. Hence Z~ (2) = ~,~(t)2 will be an improved upper limit of the number: ~,~ > 

~1 (k~ (a) < ~,~), which we will use to determine the exact abscissa ~ = ~(2). The analysis of Cauehy problem (2.1) 

with Z, = 7~$ (e) leads to a closer value of the root ~ (2.2): ~ = ~(2) ffi 0.99975 and to a considerably lower value of 
the small parameter e = 2.5 × 10 -4. This procedure can be extended to the third step to obtain once again an 

improved upper limit ~$(3) __ ~,~(2)~(2)2 = 5.85222, i.e. 5.85215 < ~l < 5.85222 and a quite accurate value ~ = ~(3) 

= 0.99999 (more aomrately, g(3) = 0.999994). After the fourth iteration we obtain ~1 (4) = ~(3)~(3)2 = 5.85215; by 

integrating Cauchy problem (2.3) we can finally establish numerically that wl(x, ~,1 (4)) > 0, x e [0, 1], i.e. ~1 (4) = 

~1 .(4) is the lower limit. As a result we have obtained a quite sharp bilateral estimate ~,1. (4) < ~1 < Z~ (3). 
In the example considered we will take the more accurate two-coordinate approximation of the Rayleigh-Ritz 

method: ¥1(x) = clsin rcr + cesin 2nx. This test function leads to the upper limit ~,~ = 5.85232 and a value of ~ = 
0.99999 (more accurately, ~ = 0.999985). The value Z,$~ 2 = 5.85214 turns out to be the lower limit since the conditions 
of Theorem 1 are salisfied and, moreover, v1(1) > 0. Hence, we have immediately established a satisfactory bilateral 
estimate ~ 2  < 7q < ~,~, but it is somewhat less accurate than that obtained above after the fourth iteration. Compu- 
tational experience shows that it may be more economic to choose a somewhat more accurate test function [9]. 

Example 3. We ~!1 investigate another instructive example for which we can construct an exact closed-form 
solution of the Sturrc~-Liouville problem. We will take the function r(x) = ( 1 + x2)-2,x e [0,1]. The complete solution 
of the problem has the form 

~.n=16n2-1,  un(x)='~l+x2sin(4narctgx), n = l , 2  .... 

~'I = 15, u I (x) = ~ sin(4arctgx) = 2x(l - x 2)(I + x 2)-~ 

For the simplest t(mt function ¥1 = sin me, using the results obtained in Section 2, we obtain the required lower 
limit ~.~ ---- 15.33728, the abscissa ~ 0.98350 and the small parameter e ffi 1.65 x 10-'. According to Theorem 1, 

* __ , 2 we obtain the lower limit of ZI: ~'1  - -  ~ ' 1 ~  ---- 14.83533. Note, incidentally, that since f < 0, we have v0) 1 > 0 
according to (3.8). "Ilae refined value is equal to Z1 (1) ffi 15.00847, and the relative error is I X1 (l) - ~1 I Xi -1 = 5.7 
× 10 -4, i.e. of the order of e 2. Thus, despite the "roughness" of the choice of the test function WI, satisfactory results 
of the estimation arc obtained after the first iteration. 

Example 4. We will briefly consider a similar problem for which the test function also differs considerably from 
the exact eigenfunctiion. We will take an Euler-type equation [6] with the function r(x) = (1 + x)-2,x ¢ [0, 1]. We 
obtain the exact closed-form solution 
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1 +f..._n.~ ~2 =20.79229, Ul(X)=l.~xsinl~n2)ln(l+x) 
~'l ='4 kin2/  

For the usual elementary function ~1 = sin ~x we obtain from formula (1.4) X] = 22.22421, which cannot be 
regarded as a good approximation. Carrying out the calculations as in Section 2, we obtain ~ = 0.95459, e = 4.5 
× 10-2; by Theorem 1 the lower limit is ~,1" = X10) = 20.25164. From (3.8) and (3.9) we obtain the refined value 
X1 (1) = 20.80330. The absolute error i s  ~,1 (1) - ~,1 ~-" 10-2, while the relative error is (Xl. - 7tl) ~.1-1 = 5 × 10 -4 - e 2, 
i.e. there is a considerable increase in the accuracy of the estimate. 

We can similarly investigate examples which are more interesting from the applied point of view. Note that the 
proposed methods of estimating the eigenvalues and the approximate numerical-analytic solution of the 
Sturm-LiouviUe problems will be effective to an even greater extent if Eq. (1.1) is close to exactly integrable. In 
particular, if it is close to an equation with constant coefficients, one can construct systems of eigenvalues {~(e)} 
and eigenfunetions {un(x, e)) with a speeitied degree of accuracy with respect to ~ and uniform with respect to 
the subscript n, n -- 1, 2 . . . .  [17]. 

6. E X T E N S I O N  OF T H E  A P P R O A C H  TO O T H E R  
CLASSES OF P R O B L E M  

We will discuss the possibility of developing the numerical-analytic method of Sections 2-4 for other 
types of boundary conditions. To fix our ideas we will consider rather briefly the ease of boundary 
conditions of the second kind: u'(O) = u'(1) = 0. In order not to complicate the discussion, in Eq. (1.1) 
we will put p(x) - 1, q(x) - O. This assumption corresponds to the mechanical model of a free string 
under tension with a linear density r(x) that varies along the length, see Section 5. The approach described 
below can be extended to the more general case q(x) ~ O, p = p(x). Thus, we will consider the 
Sturm-Liouville problem 

u"+Z,r(x)u=O, u'(O)=u'(1)=O (6.1) 

It has the eigenvalue ~ = 0 and the corresponding eigenfunction u0 = 1. It is required to determine 
(to estimate and refine) the next non-zero eigenvalue X1. We will compare the corresponding variational 
problem (see Section 1) with boundary-value problem (6.1). It is required to obtain the minimum of 
the functional with the additional isoperimetric conditions 

1 

J[u]= u'2dx--- min, *tul=llull2=l, o,t.l=<~,u).=o (6.2) 
0 

The calculations are carried out using a scheme similar to that in Sections 1-3. Further, for clarity 
and to fix our ideas will take the function r(x) = (1 + x2)-2,x E [0, 1] of Example 3 considered above. 
For comparison we will write the exact dosed-form solution 

~ , , = ' / 2 - 1 ,  y = A r c t g [ t g / 4 g y ) - y - I J ,  X,=17.4168 "7 

un(x) = ~[i+x 2 cos(y, arctgx), n = !,2 .... 

(6.3) 

As the test function ¥1 we will take the simplest function ~1 = 0~ + cos Jv¢ from the class considered; 
the constant ct is determined from the orthogonality condition (with weight r(x)) ~1[¥1] = 0 (6.2). As 
a result we obtain the function ¥1, which differs considerably from Ul(X) (6.3), and the corresponding 
lower estimate of the first eigenvalue in accordance with Rayleigh's principle 

~l(X) = cos nx - 0,27269, Xi ~< X; = 18.06583 (6.4) 

We will solve the Cauehy problem by numerical integration of Eq. (6.1) with ~, = 7~ (6.4) and the 
conditions at the left end v1(0) = 1, v'l(0) = 0. Further, we will determine the quantity ~ = 0.96875 for 
which v'l(~) = 0, and the small ~arameter ~ = 0.03125. Using the approach described in Section 2 we 
obtain the lower limit X1. = Z,~ = 16.95440. Using the perturbation method fsee Section 3) we obtain 
the refined value X1 (1) = 17.48420, the relative error of which is (2q -1 - X1)X1-1 = 4 x 10 -3 - 62. 

We will take the more complex test function ¥1, which contains two harmonics 
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• l (x)  = c~ (cos  n x  - O. 27269)  + c 2 (cos  2 n x  + O, 00125)  

It satisfies the condition O1[¥1] = 0 (6.2). The upper limit obtained by the Rayleigh-Ritz method is 
~,~ = 17.41833, wlaich is considerably closer to the exact value of ~,1 O ven by (6.3) than that obtained 
in the single-coordinate approximation (6.4). Integration of the corresponding Cauchy problem (see 
above) leads to the values ~ = 0.99993, e = 7 x 10 -5. Calculation of the lower limit gives the required 
value ~q. = X*I~ 2 = 17.41575, which is also rather close to the exact value. Calculating the mean, we 
obtain (kl) - ~ 1  m 0.00017, which differs from the exact value by an amount (~q) - ~q) = 0.00017, which 
can be assumed to be a highly accurate approximation. The relative error will be ((~q)- ~.1) ~.1-1 = 10 -5. 
Refinement of ~,1, i.e. calculation of ~,(~), leads to an even smaller error O(e 2) - 10 -s. Hence, as noted 
above, the accuracy of the calculation can be increased considerably and the amount of work involved 
in the calculations can be reduced by complicating the test function (see Example 2 in Section 5). 

We can use a procedure similar to that described above to estimate and refine the eigenvalues and 
functions for n I> 2, and also for boundary conditions of the third kind, mixed boundary conditions, 
etc. 
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